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Abstract

Convolutional neural network (CNN) has drawn increas-
ing interest in visual tracking owing to its powerfulness
in feature extraction. Most existing CNN-based track-
ers treat tracking as a classification problem. Howev-
er, these trackers are sensitive to similar distractors be-
cause their CNN models mainly focus on inter-class clas-
sification. To address this problem, we use self-structure
information of object to distinguish it from distractors.
Specifically, we utilize recurrent neural network (RNN) to
model object structure, and incorporate it into CNN to
improve its robustness to similar distractors. Consider-
ing that convolutional layers in different levels character-
ize the object from different perspectives, we use multiple
RNNs to model object structure in different levels respec-
tively. Extensive experiments on three benchmarks, OT-
B100, TC-128 and VOT2015, show that the proposed al-
gorithm outperforms other methods. Code is released at
www.dabi.temple.edu/∼hbling/code/SANet/SANet.html.

1. Introduction
Object tracking is one of the most important compo-

nents in computer vision and has a variety of applications

such as video surveillance, robotics, human-computer in-

teraction and so forth [52]. Despite great progress in recen-

t decades, visual tracking remains a challenging task due

to appearance changes caused by deformation, illumination

variations, occlusion and so on.

The deep neural networks [29], which demonstrate the

powerfulness in extracting high-level feature representa-

tions [16], have drawn extensive attention in computer vi-

sion, such as image classification [27], recognition [40],

saliency detection [48], semantic segmentation [33] and

so on. Inspired by this, many CNN-based trackers [8, 14,

21, 30, 34, 36, 42, 47] have been proposed. Among them,

[36] presents an on-line tracking method based on a multi-

domain CNN architecture and achieves state-of-the-art per-

formances on various benchmarks. By leveraging extensive

annotated videos, it learns a robust shared representation

to classify object from background. However, this tracker

may be sensitive to similar distractors because the learned

CNN model mainly focuses on inter-class classification. In

the presence of distractors, the tracker has a high chance to

misclassify the object and background.

Recently, recurrent neural networks (RNNs) [10], which

show great success in neural language process (NLP) [17],

have been brought to the computer vision community [3, 5,

11, 39, 43, 57, 58] owing to the capability of capturing long-

range dependencies among sequential data. With this prop-

erty, RNNs are able to model the self-structure of object.

Inspired by the above observations, in this paper we pro-

pose a novel Structure-Aware Network (SANet) architec-

ture for visual tracking by utilizing RNNs to model self-

structure of object. Different from conventional CNNs in

tracking, which mainly pay attention to inter-class classi-

fication and thus are prone to drift in presence of simi-

lar distractors, our SANet leverages RNNs to encode self-

structure of object during learning, which helps improve

our model in discriminating not only background object-

s of inter-class but also similar distractors of intra-class.

Because when similar distractors occur, our model is able

to capture even slight difference between the reference and

distractors, and use the discrepancies to distinguish objec-

t from distractors. Taking into account that convolutional

layers at different levels characterize the object from dif-

ferent perspectives, we apply multiple RNNs to modeling

structure of object in different levels respectively, which

strengthens robustness of the proposed model. Besides,

to supply our SANet with richer information, we adopt a

skip concatenation strategy to fuse CNN and RNN fea-

ture maps, and demonstrate its effectiveness in improving

performance. Figure 1 illustrates the proposed method in

this paper. Extensive experimental results on two large-

scale tracking benchmarks demonstrate the advances of our

method.

In summary, we make the following contributions:

• We propose the structure-aware network architecture

for tracking by using RNNs to encode self-structure
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Figure 1. Illustration of the proposed SANet for visual tracking.

of object during learning, which helps our model im-

prove not only the capability of discriminating back-

ground objects of inter-class but also similar distrac-

tors of intra-class.

• To supply our networks with richer information, we

adopt a skip concatenation strategy to fuse CNN and

RNN features, and show its effectiveness in improving

tracking performance.

• Extensive experiments on three large-scale track-

ing benchmarks, OTB100 [51], TC-128 [32] and

VOT2015 [24], demonstrate that the proposed tracker

outperforms other state-of-the-art methods.

The rest of this paper is organized as follows. Section 2

briefly summarizes related work. Section 3 illustrates self-

structure modeling of object with RNNs. Section 4 intro-

duces the proposed tracking algorithm in details. Experi-

ments are described in Section 5, followed by conclusion in

Section 6.

2. Related Work

Object tracking is one of the most challenging problems

in computer vision and has been extensively studied [52].

In the following we highlight three lines of works which

are most related to ours.

Visual tracking: Roughly speaking, tracking algorithm-

s can be categorized into two types: discriminative meth-

ods [1, 7, 20, 23, 50, 54] and generative methods [2, 12, 13,

28, 35, 38, 46, 55]. Discriminative methods regard tracking

as a classification problem which aims to separate objec-

t from ever-changing background. These methods employ

both the foreground and background information to learn

classifiers via P-N learning [23], multiple instance learn-

ing (MIL) [1], correlation filters [7, 20] and so forth. On

the contrary, generative approaches formulate the tracking

problem as searching for regions most similar to the target

object. These methods are based on either subspace mod-

els or templates and update appearance model dynamically.

Some representative generative methods includes incremen-

tal subspace learning [38], sparse representation [2, 35, 55],

probabilistic model [28, 46] and so on.

Despite promising results for tracking in some con-

strained situations, the performances of aforementioned ap-

proaches are vulnerable due to the limitation of low-level

hand-crafted features in complex environments where ob-

ject appearances are simultaneously affected by various

factors (e.g., motion blur, occlusion, deformation, scale

changes, illumination variations). One possible solution is

to adopt the learned high-level features for object appear-

ance representation.

Deep networks in tracking: Owing to the powerful-

ness in feature extraction, deep networks haven been intro-

duced into visual tracking. [14] proposes a human-tracking

method based on CNNs. [49] introduces a deep compact

tracker based on stacked autoencoder. [30] presents an on-

line learning method based on a pool of CNNs. Howev-

er, these trackers suffer from lack of enough training data

to learn a robust representation, which degrades the perfor-

mance of tracker. To address this problem, [8, 21, 34, 47]

transfer CNNs pretrained on a large-scale dataset for im-

age classification, however, the representation may not be

very effective due to the fundamental difference between

classification and tracking tasks [36]. To deal with this is-

sue, [36, 42] propose to train the CNNs on a set of annotat-

ed video sequences, and showed that the CNNs trained on

video sequences are more robust. In particular, [36] intro-

duces an effective strategy, i.e., multi-domain learning [9],

to train the CNNs, which helps to discriminate object from

background. However, this method is sensitive to similar

distractors because its CNN model mainly concentrate on

inter-class classification. Different from [36], we use RNNs

to model self-structure of object and encode it into CNN,

which is beneficial to distinguish distractors of intra-class.

RNNs on image processing: RNNs [10] have been first

introduced to handle sequential prediction task [17], and

then extended to multi-dimensional image processing tasks

[18] such as image classification [58], scene labeling [3,39],

person re-identification [44] and so on. By capturing long-
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Figure 2. Decomposition of undirected cyclic graph into four directed acyclic graphs. Images (a) and (b) are inputs. Self-structure of object

is encoded in an undirected cyclic graph in images (c) and (d). Images (e), (f), (g) and (h) are four directed acyclic graphs along southeast,

southwest, northwest and northeast directions.

range dependencies among image units, RNNs are able to

well model self-structure of object.

For visual tracking, one major challenge is to separate

object from similar distractors of intra-class. CNNs cannot

well deal with this situation because CNNs mainly focus on

classifying objects belonging to different classes. One pos-

sible solution is to leverage the differences between intra-

class objects to separate them. To make CNNs aware of the

difference between objects of intra-class, we utilize RNNs

to model self-structure of object and encode it into CNNs

for classification. With this structural information, it is able

to discriminate object from similar distractors via their even

slight discrepancies.

We note that RNNs have been investigated in [5] for

tracking, but it is different from ours. In [5], RNNs are used

to model spatial-relationship between object and surround-

ing background, and obtain a confidence map to regularize

correlation filters. However, in our work, we apply RNNs

to modeling structure of object itself, and use such structure

information to discriminate distractors of intra-class. Be-

sides, the RNNs in this work are integrated with CNNs, and

trained with enough video sequences. While in [5], RNNs

are only trained with a few initial frames, and updated with

each frame, which may not fully explore the advantages of

RNNs.

3. RNNs for Object Self-Structure Modeling
RNNs [10] are developed for modeling dependencies in

sequential data. Given an input sequence {x(t)}t=1,2,··· ,T
of length T , the hidden layer h(t) and output layer y(t) at

each time step t are calculated with{
h(t) = φ(Ux(t) +Wh(t−1) + b)

y(t) = σ(V ht + c)
(1)

where U , W and V represent weight matrices between the

input and the hidden layer, the previous hidden layer and

the current hidden layer, and the hidden layer and the out-

put layer respectively; b and c represent bias terms; and φ(·)
and σ(·) are non-linear activation functions. Since the in-

puts are progressively stored in hidden layers, RNNs can

model long-range contextual dependencies among the se-

quence elements.

For two-dimensional image data, different from one-

dimension sequential data, its self-structure is encoded in

an undirected cyclic graph (see Figure 2(c)). Because of

the loopy structure of undirected cyclic graph, the afore-

mentioned RNNs cannot be directly applied to images. To

handle this issue, we approximate the topology of an undi-

rected cyclic graph by the combination of several directed

acyclic graphs as in [39], and use variant RNNs to model

self-structure of the target object as shown in Figure 2.

Assume that a directed acyclic graph is represented with

G = {V, E}, where V = {vi}i=1,2,··· ,N denotes vertex set

and E = {eij} is the edge set, in which eij represents a di-

rected edge from vi to vj . The structure of RNNs follows

the same topology as G. A forward propagation sequence

can be seen as traversing G from the start point, and each

vertex relies on its all predecessors. For vertex vi, therefore,

the hidden layer h(vi) is expressed as a non-linear function

over current input x(vi) at vi and summation of hidden lay-

ers of all its predecessors. Specifically, the hidden layer

h(vi) and output layer y(vi) at each vi are computed with⎧⎨
⎩
h(vi) = φ(Ux(vi) +W

∑
vj∈PG(vi)

h(vj) + b)

y(vi) = σ(V h(vi) + c)
(2)

where PG(vi) denotes the predecessor set of vi in G.

The forward pass of RNNs can be calculated with Eq.

(2). For backward propagation, we need to calculate deriva-

tives at each vertex in the RNNs. For each vertex in the

directed acyclic graph, it is processed in the reverse order

of forward propagation sequence. In details, to compute

the derivatives at vertex vi, we need to look at the forward

passes of all its successors. Let SG(vi) denote the direct

successor set for vi in G. For each vk ∈ SG(vi), its hidden

layer is computed by⎧⎨
⎩
h(vk) = φ(Ux(vk) +Wh(vi) +

∑
vl∈Q

Wh(vl) + b)

y(vk) = σ(V h(vk) + c)
(3)

where Q = PG(vk) − {vi}. Combining Eq (2) and (3),

we can see that the errors back-propagated to the hid-

den layer at vi come from two sources: directed errors

from vi (i.e., ∂y(vi)

∂h(vi)
) and summation over indirected errors
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from all its successors vk ∈ SG(vi) (i.e.,
∑

vk

∂y(vk)

∂h(vi)
=∑

vk

∂y(vk)

∂h(vk)
∂h(vk)

∂h(vi)
). Therefore, the derivatives at vertex vi

can be obtained by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dh(vi) = V Tσ′(y(vi)) +
∑

vk∈SG(vi)

WTdh(vk) ◦ φ′(h(vk))

∇W (vi) =
∑

vk∈SG(vi)

dh(vk) ◦ φ′(h(vk))(h(vi))T

∇U (vi) = dh(vi) ◦ φ′(h(vi))(x(vi))T

∇b(vi) = dh(vi) ◦ φ′(h(vi))

∇V (vi) = σ′(y(vi))(h(vi))T

∇c(vi) = σ′(y(vi))
(4)

where ◦ is the Hadamard product, σ′(·) = ∂L
∂y(·)

∂y(·)
∂σ is the

derivative of loss function L with respect to output function

σ, and φ′(·) = ∂h
∂φ . Note that the superscript T denotes

transposition operation.

With Eq (2) and (4), we can perform forward and back-

ward passes on one directed acyclic graph. In this paper,

we decompose the undirected cyclic graph into four direct-

ed acyclic graphs along southeast, southwest, northwest and

northeast directions. Figure 2 visualizes the decomposition.

Let GU = {G1,G2,G3,G4} denote the undirected cyclic

graph, where G1,G2,G3,G4 represent the four directed a-

cyclic graphs respectively. For each Gm (m = 1, 2, 3, 4),

we can get the corresponding hidden layer hm by perform-

ing RNNs. The summation of all hidden layers are fed to

the output layer. We use Eq (5) to express this process

⎧⎪⎨
⎪⎩
h
(vi)
m = φ(Umx(vi) +

∑
vj∈PGm (vi)

Wmh
(vj)
m + bm)

y(vi) = σ(
∑

Gm∈GU
Vmh

(vi)
m + c)

(5)

where Um, Wm, Vm, and bm are matrix parameters and bias

term for Gm, c is the bias term for final output, and PGm
(vi)

denotes the predecessor set of vi in Gm. The error back-

propagated to previous convolutional layer at vi is comput-

ed by

∇x(vi) =
∑

Gm∈GU
UT
mdh(vi)

m ◦ φ′(h(vi)
m ) (6)

4. Proposed Tracking Algorithm
4.1. Network architecture

The architecture of the proposed network is depicted in

Figure 1, which receives a 107×107 (same in [36]) RGB

input, and has three convolutional layers (each with ReLU

and pooling layers), two fully connected layers and one ful-

ly connected classification layer. Each pooling layer is fol-

lowed by a recurrent layer, which models the structure of

object in this level. Besides, to provide the next convolu-

tional layer with more information, we adopt a skip con-

catenation strategy to fuse the features from pooling and

recurrent layers.

4.2. Training

Inspired by the success in [36], we utilize a set of an-

notated video sequences to train the whole network. For

convolutional layer, it is trained by the Stochastic Gradient

Descent (SGD) method, and the recurrent layer is trained by

the method introduced in Section 3. Besides, we also adopt

the multi-domain learning strategy as in [36]. In the train-

ing stage, the final layer has K branches, and only the kth

branch is handled in the kth iteration. The whole training

process ends when the network converges or a predefined

max number of iteration is reached. In the testing stage,

the K branches of the final layer are replaced with a single

branch corresponding to the tracked object. By adopting

the multi-domain strategy, the performance of the proposed

tracker is further improved.

4.3. Tracking and update

Visual tracking is achieved within the particle filter

framework. For each new frame, we sample N target can-

didates {ci}Ni=1 around the position of target in last frame,

and evaluate them by their positive scores p(ci) obtained by

the network. The positive score of each candidate indicates

its probability belonging to target class. The candidate with

the highest positive score is chosen to be the tracked result

O as follows

O = argmax
ci

p(ci) (7)

Due to object appearance variation caused by factors

such as lighting change and deformation, update is essential

during tracking. We adopt two strategies to update the net-

work as in [36]: short-term and long-term updates. When

the positive score p(O) of the tracked result is smaller than a

predefined threshold θ, the short-term update is performed.

Otherwise, the long-term update is executed. For the long-

term update, the whole network is updated with the collect-

ed positive samples for a long period of time and negative

samples stored for a short period time. While for the short-

term update, both positive and negative samples for update

are collected from a short period of time.

4.4. Hard minibatch mining

In tracking, most negative samples are redundant, and

only a few distracting negative samples are helpful in train-

ing a discriminative classifier. In this situation, the plain

SGD method easily results in drift due insufficient effective

negative samples. To address this problem, [36] leverages

a popular solution, i.e., hard negative mining, in object de-

tection [41]. In this paper, we utilize the same strategy to

alleviate this problem.
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Figure 3. Precision and success plots on OTB100 [51]. The numbers in the legend indicate the representative precisions at 20 pixels for

precision plots, and the area-under-curve scores for success plots.

(a) Precision score at 20 pixels for each attribute (b) Success score of average AUC for each attribute
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Figure 4. Precision scores at 20 pixels and success scores of average AUC of the four leading trackers under different attributes of test

sequences in OPE on OTB [51], including illumination variation (IV), out-of-plane rotation (OPR), scale variation (SV), occlusion (OCC),

deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view (OV), background cluttered (BC) and low

resolution (LR).

4.5. Box refinement

To locate the target object, we sample multiple positive

samples around the target, which may result in failure to

find the tight boxes enclosing the target. To handle this is-

sue, [36, 42] adopt a refinement step in each frame to im-

prove the predicted bounding box. In this paper, the same

strategy is utilized. In the first frame, we train a simple lin-

ear regression model to predict the position of target. In

subsequent frames, we use the regression model to adjust

the target locations obtained by Eq. (3) if the positive score

of the tracked result is larger than θ.

5. Experiments

5.1. Implementation details

The proposed method is implemented in Matlab based

on MatConvNet [45], and runs at around 1 frames per

second (FPS) with 3.7 GHz Intel i7 Core and a NVIDIA

GTX TITAN Z GPU. In each new frame, we sample 300

(N = 300) target candidates in translation and scale dimen-

sion from a Gaussian distribution. Three independent RNNs

are utilized to model image unit dependencies in multiple

levels, i.e., the 1st, 2nd and 3rd pooling layers. The di-

mension of hidden layers of RNNs are set to the same as

the channels of the 1st, 2nd and 3rd pooling layers. The

learning rates of RNNs are initialized to be 10−3 and de-

cay exponentially with the rate of 0.9. Other parameters of

convolutional layers are set to the same as in [36].

5.2. Evaluation on OTB

OTB100 [51] is a popular tracking benchmark contain-

ing 100 fully annotated videos with various challenges. We

employ the precision plots and success plots defined in [51]

to evaluate the robustness of the tracking approaches. In ad-

dition to the trackers included in the benchmark [51], e.g.,

SCM [56] and Struck [19], we also compare our method

with most recent state-of-the-art trackers including MEEM

[53], TGPR [15], MDNet [36], MUSTer [22], CNN-SVM

[21], DeepSRDCF [7], C-COT [8], HCFT [34], HDT [37]

and KCF [20]. To train the network, we utilize image se-

quences collected from VOT2013 [26], VOT2014 [25] and

VOT2015 [24], excluding the videos included in OTB [51].

Figure 3 shows the comparisons of our method with oth-
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Figure 5. Precision and success plots on TC-128 [32]. The numbers in the legend indicate the representative precisions at 20 pixels for

precision plots, and the area-under-curve scores for success plots.
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Figure 6. Precision scores at 20 pixels and success scores of average AUC of the four leading trackers under different attributes of test

sequences in OPE on TC-128 [32], including: IV, OPR, SV, OCC, DEF, MB, FM, IPR, OV, BC and LR.

er state-of-the-art tracker in terms of precision and success

plots, respectively. From Figure 3, we can see that the pro-

posed approach outperforms other state-of-the-art trackers

in both measures. The exceptional scores at mild thresholds

means our tracker hardly misses targets while the compet-

itive scores at strict thresholds implies that our algorithm

also finds tight bounding boxes to targets. Among other

trackers, [36] also utilizes deep convolutional neural net-

works to learn the object appearance representation. How-

ever, it does not take self-structure information of object

into account. While our method considers structure of ob-

ject during learning, and improves the ability of network

to distinguish object from background. Figure 4 illustrates

that our tracker is able to effectively deal with various chal-

lenging situations. It is worth noticing that, compared with

the method in [36], our method improves performance of

tracking in all 11 attributes.

In [36], an effective strategy, i.e., multi-domain learn-

ing, is adopted to train the networks. In this work, we also

leverage this strategy to train the networks. To verify the

impact of multi-domain learning, we conduct another ex-

periments without multi-domain learning method to train

the network, while keep other conditions the same. Without

multi-domain learning, our method achieves 0.922 ranking

score in precision plots and 0.688 ranking score in success

plots. Compared with using multi-domain learning method,

the tracking performance slightly degrades, which demon-

strates the effectiveness of multi-domain learning strategy.

5.3. Evaluation on TC-128

TC-128 [32] contains 128 fully annotated color image

sequences. We use the same metrics used in [51] and [32],

i.e., precision and success plots, to evaluate the tracking

methods. In addition to the trackers tested in the benchmark

[32], we add some recent trackers including [7], C-COT [8],

HCFT [34], HDT [37] and MDNet [36]. To train the net-

work, we use sequences in VOT2013 [26], VOT2014 [25]

and VOT2015 [24], excluding the videos in OTB [51].

Figure 5 illustrates the comparisons of our algorithm

with other methods in terms of precision and success plot-

s, respectively. From Figure 5, we can see that our ap-

proach outperforms other state-of-the-art trackers in both

measures. Besides, to facilitate more detailed analysis, we

also report the performance of four lead tracker on different

attributes in Figure 6. Experimental results demonstrate that

our method can well deal with various challenging factors
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Table 1. The average scores and ranks of accuracy and robustness

of different methods on VOT2015 [24]. The top three scores are

highlighted in red, blue and green, respectively.

Trackers
Accuracy Robustness Expected

Rank Score Rank Score overlap ratio

DSST 2.92 0.54 5.65 2.56 0.1719

DeepSRDCF 2.03 0.57 2.32 1.05 0.3181

LGT 5.75 0.42 4.72 2.21 0.1737

MEEM 3 0.5 4.32 1.85 0.2212

MUSTer 2.87 0.52 4.48 2 0.1950

SAMF 2.68 0.53 4.18 1.94 0.2021

TGPR 3.48 0.48 5.08 2.31 0.1938

MDNet 1.2 0.6 1.62 0.69 0.3783

SANet 1.17 0.61 1.58 0.69 0.3895

Figure 7. Expected average overlap ratio graph with trackers

ranked from right to left.

and consistently outperform the other three trackers in most

attributes.

5.4. Evaluation on VOT2015

VOT2015 [24] contains 60 image sequences with various

challenges. According to VOT challenge protocol in [24], a

tracker is re-initialized whenever failure happens. Two met-

rics, accuracy and robustness, are utilized to evaluate the

performance of trackers. Besides, the VOT challenge al-

so adopts the expected average overlap as a new evaluation

metric, which estimates how accurate the estimated bound-

ing box is after a certain number of frames are processed

since initialization. We compare our method with eight

state-of-the-art trackers, including DSST [6], DeepSRDCF

[7], MDNet [36], TGPR [15], MEEM [53], MUSTer [22],

SAMF [31], and LGT [4]. Our network is pre-trained using

sequences from OTB100 [51], excluding the sequences in

VOT2015 [24] dataset.

Table 1 summarizes the comparison of our tracker with

other approaches. From the table we can see that the pro-

posed method outperforms other trackers in all evaluation

metrics. Especially, compared with MDNet [36], our track-

er demonstrates advances in both accuracy and robustness,

showing again the benefits of taking structure information

into account. Figure 7 visualizes the ranks of trackers on

VOT2015 [24] in term of expected overlap ratio.

6. Conclusion

We present a novel network architecture named SANet

for visual tracking by taking into consideration self-

structure information of a target object. Different from pre-

vious CNNs-based tracking methods, which mainly con-

centrate on inter-class classification and thus are prone to

cause drift in presence of similar distractors, our SANet

leverages RNNs to model the structure of target object and

combines such structural information with CNNs to learn a

discriminative appearance model, which is effective for dis-

tinguishing not only background objects of inter-class but

also similar distractors of intra-class. Experimental result-

s on three large-scale tracking benchmarks demonstrate the

effectiveness of our method.
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